1,993 research outputs found

    Some reports of snowfall from fog during the UK winter of 2008/09

    Get PDF
    Snowfall during anticyclonic, non-frontal, and foggy conditions is surprising. Because it is often not forecast, it can present a hazard to transport and modify the surface albedo. In this report, we present some observations of snowfall during conditions of freezing fog in the UK during the winter of 2008/09

    Electromagnetic atmosphere-plasma coupling: the global atmospheric electric circuit

    Get PDF
    A description is given of the global atmospheric electric circuit operating between the Earth’s surface and the ionosphere. Attention is drawn to the huge range of horizontal and vertical spatial scales, ranging from 10−9 m to 1012 m, concerned with the many important processes at work. A similarly enormous range of time scales is involved from 10−6 s to 109 s, in the physical effects and different phenomena that need to be considered. The current flowing in the global circuit is generated by disturbed weather such as thunderstorms and electrified rain/shower clouds, mostly occurring over the Earth’s land surface. The profile of electrical conductivity up through the atmosphere, determined mainly by galactic cosmic ray ionization, is a crucial parameter of the circuit. Model simulation results on the variation of the ionospheric potential, ∼250 kV positive with respect to the Earth’s potential, following lightning discharges and sprites are summarized. Experimental results comparing global circuit variations with the neutron rate recorded at Climax, Colorado, are then discussed. Within the return (load) part of the circuit in the fair weather regions remote from the generators, charge layers exist on the upper and lower edges of extensive layer clouds; new experimental evidence for these charge layers is also reviewed. Finally, some directions for future research in the subject are suggested

    Solar modulation in surface atmospheric electricity

    Get PDF
    The solar wind modulates the flux of galactic cosmic rays impinging on Earth inversely with solar activity. Cosmic ray ionisation is the major source of air’s electrical conductivity over the oceans and well above the continents. Differential solar modulation of the cosmic ray energy spectrum modifies the cosmic ray ionisation at different latitudes,varying the total atmospheric columnar conductance. This redistributes current flow in the global atmospheric electrical circuit, including the local vertical current density and the related surface potential gradient. Surface vertical current density and potential gradient measurements made independently at Lerwick Observatory,Shetland,from 1978 to 1985 are compared with modelled changes in cosmic ray ionisation arising from solar activity changes. Both the lower troposphere atmospheric electricity quantities are significantly increased at cosmic ray maximum(solar minimum),with a proportional change greater than that of the cosmic ray change

    The chaos machine: analogue computing rediscovered (1)

    Get PDF
    Analogue computers provide actual rather than virtual representations of model systems. They are powerful and engaging computing machines that are cheap and simple to build. This two-part Retronics article helps you build (and understand!) your own analogue computer to simulate the Lorenz butterfly that's become iconic for Chaos theory

    Remote sensing of cloud base charge

    Get PDF
    Layer clouds are abundant in the Earth's atmosphere. Such clouds do not become sufficiently strongly charged to generate lightning, but they show weak charging along the upper and lower cloud boundaries where there is a conductivity transition. Cloud edge charging has recently been observed using balloon-carried electrometers. Measurement of cloud boundary charging without balloons is shown to be possible here for low altitude (<1km) charged cloud bases, through combining their effect on the surface electric field with laser time of flight cloud base height measurements, and the application of simple electrostatic models.Comment: Proceedings of the Electrostatics Society of America conference, Ottawa, June 201

    The Carnegie curve

    Get PDF
    The Earth’s fair weather atmospheric electric field shows, in clean air, an average daily variation which follows universal time, globally independent of the measurement position. This single diurnal cycle variation (maximum around 19UT and minimum around 03UT) is widely known as the Carnegie curve, after the geophysical survey vessel of the Carnegie Institution of Washington on which the original measurement campaigns demonstrating the universal time variation were undertaken. The Carnegie curve’s enduring importance is in providing a reference variation against which atmospheric electricity measurements are still compared; it is believed to originate from regular daily variations in atmospheric electrification associated with the different global disturbed weather regions. Details of the instrumentation, measurement principles and data obtained on the Carnegie’s seventh and final cruise are reviewed here, also deriving new harmonic coefficients allowing calculation of the Carnegie curve for different seasons. The additional harmonic analysis now identifies changes in the phasing of the maximum and minimum in the Carnegie curve, which shows a systematic seasonal variation, linked to the solstices and equinoxes, respectively

    Behind the curve: a comparison of historical sources for the Carnegie curve of the global atmospheric electric circuit

    Get PDF
    The “Carnegie curve” describes the diurnal variation of the global atmospheric electric circuit. It was originally found from atmospheric electric Potential Gradient (PG) measurements, made on the Carnegie, effectively a floating atmospheric electrical observatory, which undertook global cruises between 1915 and 1929. These measurements confirmed that the single diurnal cycle PG variation, previously obtained in both polar regions, was global in extent. The averaged diurnal PG variation, represented by derived harmonic fits, provides a characteristic variation known as the “Carnegie curve”, against which modern measurements are still compared. The ocean air PG measurements were extensively described in reports of the Carnegie Institution of Washington (CIW) but widely used secondary sources of the Carnegie curve contain small differences, arising through approximations and transcription errors. Investigations using the historical CIW data show that the original harmonic fit coefficients are reproducible. Despite the inconsistencies, the secondary sources nevertheless mostly yield diurnal variations which fall within the variability of the original historical data

    The weather's response to a solar eclipse

    Get PDF
    Solar eclipses are not of merely astronomical interest, as they provide a predictable transient reduction in the energy source driving the atmosphere and weather systems. Changes in surface air temperature have been measured since 1834 with wind speed and direction subsequently studied, most notably during the 1900 US eclipse. These studies led to theories associating wind speed and direction changes, which, as different eclipse have produced different effects, have not been without controversy. Here, these theories are developed further using observations from the UK eclipses of 1999 and 2015 and detailed weather prediction models. These show that near-surface wind effects during eclipses can result from changes in structure of the lowest part of the atmosphere
    corecore